金融為現(xiàn)代數(shù)學技術成功地應用于實際問題提供了一個十分生動的例子:金融衍生品定價。本書可作為金融數(shù)學入門教材,含有大量的習題和例子,面向有一定數(shù)學基礎的讀者。本書首先基于離散時間框架介紹了一些基本概念,如二叉樹、鞅、布朗運動、隨機積分及Black-Scholes期權定價公式,然后介紹了一些復雜的金融模型和金融產品,最后一章則介紹了金融方面更為高級的話題,如帶跳的股票價格模型和隨機波動率等。本書作為金融數(shù)學的基礎教材,適用于相關專業(yè)的本科生和研究生課程,也可供相關領域專業(yè)人士參考。Contents1Singleperiodmodels1Summary11.1Somedefinitionsfromfinance11.2Pricingaforward41.3Theone-stepbinarymodel61.4Aternarymodel81.5Acharacterisationofnoarbitrage91.6Therisk-neutralprobabilitymeasure13Exercises182Binomialtreesanddiscreteparametermartingales21Summary212.1Themultiperiodbinarymodel212.2Americanoptions262.3DiscreteparametermartingalesandMarkovprocesses282.4Someimportantmartingaletheorems382.5TheBinomialRepresentationTheorem432.6Overturetocontinuousmodels45Exercises473Brownianmotion51Summary513.1Definitionoftheprocess513.2Lévy'sconstructionofBrownianmotion563.3Thereflectionprincipleandscaling593.4Martingalesincontinuoustime63Exercises674Stochasticcalculus71Summary714.1Stockpricesarenotdifferentiable724.2Stochasticintegration744.3It?'sformula854.4IntegrationbypartsandastochasticFubiniTheorem934.5TheGirsanovTheorem964.6TheBrownianMartingaleRepresentationTheorem1004.7WhygeometricBrownianmotion?1024.8TheFeynman-Kacrepresentation102Exercises1075TheBlack-Scholesmodel112Summary1125.1ThebasicBlack-Scholesmodel1125.2Black-ScholespriceandhedgeforEuropeanoptions1185.3Foreignexchange1225.4Dividends1265.5Bonds1315.6Marketpriceofrisk132Exercises1346Oifferentpayoffs139Summary1396.1Europeanoptionswithdiscontinuouspayoffs1396.2Multistageoptions1416.3Lookbacksandbarriers1446.4Asianoptions1496.5Americanoptions150Exercises1547Biggermodels159Summary1597.1Generalstockmodel1607.2Multiplestockmodels1637.3Assetpriceswithjumps1757.4Modelerror181Exercises185Bibliography189Notation191Index193