“……本書內(nèi)容豐富,不論作為教材還是參考書都非常值得推薦?!薄绹y(tǒng)計學報“本書是一本非常優(yōu)秀的教材,強調(diào)了計算機在模擬技術(shù)上的應(yīng)用。一定的概率和統(tǒng)計知識將有助于理解本書的精髓?!薄獊嗰R遜網(wǎng)上書店評論統(tǒng)計模擬是一門新興的統(tǒng)計學和計算機結(jié)合的學科,因其便利性和經(jīng)濟性而廣泛應(yīng)用于統(tǒng)計學、數(shù)學、精算科學、工程學、物理學等眾多領(lǐng)域,用以獲得精確而有效的解決方案。本書是國際知名統(tǒng)計學家Sheldon M. Ross所著的經(jīng)典教材,已被加州大學伯克利分校、哥倫比亞大學等多所名校采用。書中涵蓋了統(tǒng)計模擬最新方法和技術(shù),提供了豐富的實例,備受業(yè)界推崇。本書特色:提供了分析模擬數(shù)據(jù)以及模擬模型的擬合檢驗所需的統(tǒng)計方法。通過許多實用的例子(如多服務(wù)器排隊法、存貨控制及行使股票期權(quán)等)來闡明和提出理論。強調(diào)方差縮減技術(shù),包括控制變量及它們在因歸分析中的應(yīng)用等。提供了有關(guān)保險風險模型、生成隨機向量、奇異期權(quán)的材料和關(guān)于產(chǎn)生離散隨機變量混淆方法的獨特材料。第4版特別增加了隨機序列函數(shù)和隨機子集函數(shù)的評估、分層抽樣法的應(yīng)用?!”緯榻B了統(tǒng)計模擬的一些實用方法和技術(shù)。在對概率的基本知識進行了簡單的回顧這后,介紹了如何利用計算機產(chǎn)生隨機數(shù)以及如何利用這些隨機數(shù)產(chǎn)生任意分布的隨機變量、隨機過程等。然后介紹一些分析編譯數(shù)據(jù)的方法和技術(shù),如Bootstrap、方差縮減技術(shù)等。接著介紹了如何利用統(tǒng)計模擬來判斷所選的隨機模型是否擬合實際的數(shù)據(jù)。最后介紹了MCMC及一些最新發(fā)展的統(tǒng)計模擬技術(shù)和論題。本書可作為統(tǒng)計學、計算數(shù)學、保險學、精算學等專業(yè)本科生教材,也可供相關(guān)專業(yè)人士參考。本書為英文第4版。
作者簡介
作者:Sheldon M. RossSheldon M. Ross國際知名概率與統(tǒng)計學家,南加州大學工業(yè)工程與運籌系系主任。畢業(yè)于斯坦福大學統(tǒng)計系,曾在加州大學伯克利分校任教多年。研究領(lǐng)域包括:隨機模型.仿真模擬、統(tǒng)計分析、金融數(shù)學等:Ross教授著述頗豐,他的多種暢銷數(shù)學和統(tǒng)計教材均產(chǎn)生了世界性的影響,如Introduction to Probability Models(《應(yīng)用隨機過程:概率模型導論》),A First Course in Probability(《概率論墓礎(chǔ)教程》)等(均由人民郵電出版社出版)。
圖書目錄
1 Introduction Exercises 2 Elements of Probability 2.1 Sample Space and Events 2.2 Axioms of Probability 2.3 Conditional Probability and Independence 2.4 Random Variables 2.5 Expectation 2.6 Variance 2.7 Chebyshevs Inequality and the Laws of Large Numbers 2.8 Some Discrete Random Variables Binomial Random Variables Poisson Random Variables Geometric Random Variables The Negative Binomial Random Variable Hypergeometric Random Variables 2.9 Continuous Random Variables Uniformly Distributed Random Variables Normal Random Variables Exponential Random Variables The Poisson Process and Gamma Random Variables The Nonhomogeneous Poisson Process 2.10 Conditional Expectation and Conditional Variance Exercises References 3 Random Numbers Introduction 3.1 Pseudorandom Number Generation 3.2 Using Random Numbers to Evaluate Integrals Exercises References 4 Generating Discrete Random Variables 4.1 The Inverse Transform Method 4.2 Generating a Poisson Random Variable 4.3 Generating Binomial Random Variables 4.4 The Acceptance-Rejection Technique 4.5 The Composition Approach 4.6 Generating Random Vectors Exercises 5 Generating Continuous Random Variables Introduction 5.1 The Inverse Transform Algorithm 5.2 The Rejection Method 5.3 The Polar Method for Generating Normal Random Variables 5.4 Generating a Poisson Process 5.5 Generating a Nonhomogeneous Poisson Process Exercises References 6 The Discrete Event Simulation Approach Introduction 6.1 Simulation via Discrete Events 6.2 A Single-Server Queueing System 6.3 A Queueing System with Two Servers in Series 6.4 A Queueing System with Two Parallel Servers 6.5 An Inventory Model 6.6 An Insurance Risk Model 6.7 A Repair Problem 6.8 Exercising a Stock Option 6.9 Verification of the Simulation Model Exercises References 7 Statistical Analysis of Simulated Data Introduction 7.1 The Sample Mean and Sample Variance 7.2 Interval Estimates of a Population Mean 7.3 The Bootstrapping Technique for Estimating Mean Square Errors Exercises References 8 Variance Reduction Techniques Introduction 8.1 The Use of Antithetic Variables 8.2 The Use of Control Variates 8.3 Variance Reduction by Conditioning Estimating the Expected Number of Renewals by Time t 8.4 Stratified Sampling 8.5 Importance Sampling 8.6 Using Common Random Numbers 8.7 Evaluating an Exotic Option Appendix: Verification of Antithetic Variable Approach When Estimating the Expected Value of Monotone Functions Exercises References 9 Statistical Validation Techniques Introduction 9.1 Goodness of Fit Tests The Chi-Square Goodness of Fit Test for Discrete Data The Kolmogorov-Smirnov Test for Continuous Data 9.2 Goodness of Fit Tests When Some Parameters Are Unspecified The Discrete Data Case The Continuous Data Case 9.3 The Two-Sample Problem 9.4 Validating the Assumption of a Nonhomogeneous Poisson Process Exercises References 10 Markov Chain Monte Carlo Methods Introduction 10.1 Markov Chains 10.2 The Hastings-Metropolis Algorithm 10.3 The Gibbs Sampler 10.4 Simulated Annealing 10.5 The Sampling Importance Resampling Algorithm Exercises References 11 Some Additional Topics Introduction 11.1 The Alias Method for Generating Discrete Random Variables 11.2 Simulating a Two-Dimensional Poisson Process 11.3 Simulation Applications of an Identity for Sums of Bernoulli Random Variables 11.4 Estimating the Distribution and the Mean of the First Passage Time of a Markov Chain 11.5 Coupling from the Past Exercises References Index