注冊 | 登錄讀書好,好讀書,讀好書!
讀書網-DuShu.com
當前位置: 首頁出版圖書科學技術自然科學數學高等數學上冊

高等數學上冊

高等數學上冊

定 價:¥31.90

作 者: 齊民友 主編
出版社: 高等教育出版社
叢編項:
標 簽: 高等數學

購買這本書可以去


ISBN: 9787040278323 出版時間: 2009-08-01 包裝: 平裝
開本: 16開 頁數: 360 字數:  

內容簡介

  本書是根據教育部高等學校數學與統(tǒng)計學教學指導委員會制定的“工科類本科數學基礎課程教學基本要求”編寫而成的,分為上、下兩冊。上冊內容包括極限與連續(xù)、導數與微分、中值定理與導數的應用、不定積分、定積分及其應用、反常積分、微分方程等。下冊內容包括空間解析幾何與向量代數、多元函數微分學、重積分、曲線積分與曲面積分、含參變量積分、無窮級數等。本書敘述清晰、層次分明、通俗易懂、例題豐富,可供高等院校工科各個專業(yè)作為教材使用。

作者簡介

暫缺《高等數學上冊》作者簡介

圖書目錄

第1章  極限與連續(xù)
  第1節(jié)  預備知識
    1.1  集合
    1.2  區(qū)間與鄰域
    1.3  數集的界
    1.4  映射與函數
    習題1-1
  第2節(jié)  數列極限
    2.1  數列與子數列的概念
    2.2  數列極限的概念
    2.3  數列極限的性質
    2.4  數列極限的四則運算法則
    2.5  數列極限存在的判別定理
    習題1-2
  第3節(jié)  函數極限
    3.1  自變量趨于無窮大時函數的極限
    3.2  自變量趨于有限值時函數的極限
    3.3  單側極限
    習題1-3
  第4節(jié)  函數極限的性質與運算法則
    4.1  函數極限的性質
    4.2  函數極限的運算法則
    習題1-4
  第5節(jié)  函數極限存在的條件
    5.1  歸結原理
    5.2  夾逼準則與兩個重要極限
    5.3  函數極限的柯西收斂準則
    習題1-5
  第6節(jié)  無窮小與無窮大
    6.1  無窮小
    6.2  無窮大
    6.3  無窮小的比較
    習題1-6
  第7節(jié)  函數的連續(xù)性與間斷點
    7.1  函數的連續(xù)性
    7.2  間斷點及其分類
    7.3  連續(xù)函數的性質
    習題1-7
  第8節(jié)  閉區(qū)間上連續(xù)函數的性質
    習題1-8
  第9節(jié)  一致連續(xù)性
    習題1-9
  總習題一
第2章  導數與微分
  第1節(jié)  導數的概念
    1.1  引例
    1.2  導數的定義
    1.3  求導數舉例
    1.4  導數的幾何意義
    1.5  函數的可導性與連續(xù)性之間的關系
    習題2-1
  第2節(jié)  函數的求導法則
    2.1  函數的和、差、積、商的求導法則
    2.2  反函數的求導法則
    2.3  復合函數的求導法則
    2.4  初等函數的求導公式與基本求導法則
    習題2-2
  第3節(jié)  隱函數的導數、由參數方程所確定的函數的導數
    3.1  隱函數的導數
    3.2  參數方程所確定的函數的導數
    3.3  相關變化率
    習題2-3
  第4節(jié)  高階導數
    4.1  高階導數的定義
    4.2  高階導數的運算法則
    習題2-4
  第5節(jié)  微分
    5.1  微分的概念
    5.2  微分的基本公式和運算法則
    5.3  高階微分
    5.4  微分在近似計算中的應用
    習題2—5
  總習題二
第3章  中值定理與導數的應用
  第1  節(jié)微分中值定理
    1.1  費馬定理
    1.2  羅爾中值定理
    1.3  拉格朗日中值定理
    1.4  柯西中值定理
    習題3-1
  第2節(jié)  泰勒公式
    習題3-2
  第3節(jié)  洛必達法則
    3.1  “O/O”型未定式
    3.2  “∞/∞型未定式
    3.3  其它類型的未定式
    3.4  使用洛必迭法則應該注意的問題
    習題3-3
  第4節(jié)  函數的單調性與極值
    4.1  函數的單調性
    4.2  函數的極值
    4.3  函數的最大值最小值
    習題3-4
  第5節(jié)  曲線的凸性與函數作圖
    5.1  曲線的凸性
    5.2  漸近線
    5.3  函數的作圖
    習題3-5
  第6節(jié)  平面曲線的曲率
    6.1  弧微分
    6.2  曲線的曲率
    6.3  曲率的計算
    6.4  曲率圓與曲率半徑
    習題3-6
  總習題三
第4章不定積分
  第1節(jié)  原函數與不定積分的概念
    1.1  原函數與不定積分
    1.2  基本積分表
    1.3  不定積分的線性運算法則
    習題4-1
  第2節(jié)  不定積分的換元積分法與分部積分法
    2.1  換元積分法
    2.2  分部積分法
    習題4-2
  第3節(jié)  有理函數的不定積分
    習題4-3
  第4節(jié)  可有理化函數的不定積分
    4.1  三角函數有理式的不定積分
    4.2  簡單無理函數的不定積分
    習題4-4
  總習題四
第5章  定積分及其應用
  第1節(jié)  定積分的概念
    1.1  具體實例
    1.2  定積分的定義
    1.3  定積分的幾何意義
    習題5-1
  第2節(jié)  定積分的性質
    2.1  定積分的基本性質
    2.2  積分中值定理
    習題5-2
  第3節(jié)  微積分基本定理
    習題5-3
  第4節(jié)  定積分的計算方法
    4.1  定積分的換元積分法
    4.2  定積分的分部積分法
    習題5-4
  第5節(jié)  定積分的幾何應用舉例
    5.1  平面圖形的面積
    5.2  體積
    5.3  平面曲線的弧長
    習題5-5
  第6節(jié)  定積分在物理中的應用
    6.1  質量
    6.2  功
    6.3  液體的壓力
    6.4  引力
    6.5  靜力矩與質心
    6.6  轉動慣量
    6.7  平均值、均方根值
    習題5-6
  第7節(jié)  定積分的近似計算
    7.1  矩形法
    7.2  梯形法
    7.3  拋物線法
    習題5-7
  總習題五
第6章  反常積分
  第1節(jié)  積分限為無窮的反常積分
    1.1  積分限為無窮的反常積分概念
    1.2  積分限為無窮的反常積分性質及判別法
    習題6-1
  第2節(jié)  無界函數的反常積分
    2.1  無界函數的反常積分概念
    2.2  無界函數的反常積分的性質及判別法
    習題6-2
  總習題六
第7章  微分方程
  第1節(jié)  微分方程的基本概念
    1.1  引例
    1.2  常微分方程的基本概念
    習題7-1
  第2節(jié)  一階微分方程
    2.1  可分離變量的微分方程
    2.2  可化為可分離變量型的方程
    2.3  一階線性微分方程
    2.4  伯努利方程
    習題7-2
  第3節(jié)  可降階的高階微分方程
    3.1  y(n)=f(x)情形
    3.2  y"=f(x,y')情形
    3.3  y"=f(y,y')情形
    3.4  其它情形
    3.5  二階微分方程應用舉例
    習題7-3
  第4節(jié)  線性微分方程解的結構
    4.1  二階齊次線性微分方程解的結構
    4.2  二階非齊次線性微分方程解的結構
    4.3  解線性微分方程的常數變易法
    習題7—4
  第5節(jié)  常系數線性微分方程
    5.1  二階常系數齊次線性微分方程
    5.2  二階常系數非齊次線性微分方程
    5.3  歐拉方程
    5.4  常系數線性微分方程應用舉例
    習題7-5
  總習題七
部分習題答案

本目錄推薦

掃描二維碼
Copyright ? 讀書網 www.afriseller.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網安備 42010302001612號